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Abstract—Time series often present gaps in the data. This
phenomenon, also called missing values, is so prevalent that a
cottage industry of missing-value imputation algorithms exists,
each with different capabilities and efficacy/efficiency tradeoffs.
So far, however, there has been no way to accurately select the
most appropriate approach among all algorithms, given a new
time series requiring repair.

In this paper, we introduce a new configuration-free system,
A-DARTS (for Automated DAta Repair in Time Series), to
automatically select the best repair technique for a given faulty
time series. A-DARTS’s recommendation engine is trained via an
iterative process that carefully learns the behavior of imputation
algorithms using an extensive dataset of series that we curated.
The selection process is made efficient by several new pruning
techniques particularly adjusted to time series data. Applications
that manipulate time series can now easily embed A-DARTS’s
recommendation engine and repair data on the fly. Our experi-
ments show that our system picks, on average, the best imputation
algorithm 20% more frequently than the best-in-class AutoML
technique. Moreover, it produces stable recommendations across
datasets by incurring 2.5x less error variance, eliminating the
stability issue observed in all state-of-the-art methods we tested.

Index Terms—time series, data repair, imputation, missing
values, model selection, feature extraction.

I. INTRODUCTION

Time series data is the lingua franca of IoT devices in
particular and sensors in general. Processing data from these
devices is at the core of several applications, such as anomaly
detection [1]–[3], forecasting [4], [5], data mining [6], [7],
classification [8], similarity search [9], [10], to cite a few. In
practice, IoT devices and sensors may suffer temporary failures
in data transfer due to power loss or interference, leaving the
resulting time series with a missing block of values. Processing
these faulty time series is known to yield suboptimal or wrong
results [11], [12].

Over the last decades, several imputation algorithms have
been introduced to recover the missing blocks in time se-
ries [13]–[31]. These algorithms take a faulty series and, based

on various replacement strategies, suggest surrogate values for
the missing data portions. The critical aspect of these algo-
rithms is that they aim to produce an imputation suggestion
that does not mischaracterize the time series. Suggesting a
verisimilar replacement for the missing block restores the time
series’ ability to be processed correctly.

This quest for verisimilarity is ultimately what fuels the
diversity of imputation algorithms. A missing block in one
such series should be replaced with values that reflect the
series features, and no single algorithm has proven capable of
producing good replacement values for a wide variety of cases.
Finding the appropriate imputation is of paramount importance
since it heavily impacts the quality of downstream tasks [15].
Our experimental results on various datasets show that the
careful selection of imputation algorithms drastically improves
time series forecasting by up to 80%. To guide the choice
of existing algorithms, there exist benchmarks and evaluation
studies that determine which algorithm does well and in which
circumstances [32]–[34].

Those works, however, are all qualitative as they only
provide guidelines for algorithm selection. Instead, we seek
a method that, given a new time series with missing blocks,
automatically recommends the best imputation algorithm to fix
it. Since the incomplete time series is unknown, this problem
can intuitively be solved using classifiers. In other words, a
classifier can be trained over the results of each imputation
algorithm on a large number of time series and then used
to recommend the best imputation class for the new series.
Unfortunately, this alternative is known to yield subpar results,
as the performance of classifiers often varies from one dataset
to another depending on the features carried by the series [35],
[36]. We will discuss this observation in more detail later.

AutoML methods [37] have recently emerged to cope with
the lack of stability of classifiers. Simply put, AutoML meth-
ods are expressed as “just add water” frameworks that aim to
find the most adequate models, classifiers in our case, and their



hyperparameters for a given task [38]–[41]. These techniques
essentially pitch different models against one another, pruning
poor-performing ones along the way and eventually selecting
the best model. Existing AutoML techniques are instrumental
for recommendation problems similar to ours, but they suffer a
major drawback: only one model survives the search. As stated
above, no known model performs best in all scenarios, thus
leading to poor recommendations. Those frameworks cannot
find more than one “winning” model for two reasons. First,
their search strategy explores a reduced space of model config-
urations, which does not consider time series features. Second,
they lack an adaptive filtering that allows variations of the
same model to survive. Due to those challenging aspects, the
automated selection of time series repair techniques remains
an open problem.

Our paper aims to solve the limitations of existing AutoML
solutions using a new method specialized for time series im-
putation. Our framework, called A-DARTS, achieves efficacy
and efficiency thanks to (a) a novel fine-grained navigation
strategy to pitch models against one another that allows for
more than one winning model, (b) a new feature selection
mechanism, and (c) highly-curated training datasets to use
as ground truth. We methodically gather 67K real-world time
series from various applications that cover a significant range
of values for all the needed features.

The A-DARTS framework is systematically more accurate
for time series imputation in all the cases we tested, and
it presents 2.5× less error variance than the best existing
AutoML frameworks available. A-DARTS is also extremely
fast and is almost instantaneous concerning the time it takes
to make a recommendation. The source code of A-DARTS and
the training datasets are open-sourced. Any other application
can easily embed the model that results from A-DARTS’s
training, along with a selection of algorithm implementations,
thus acquiring the ability to perform automatic time series
imputation. To the best of our knowledge, no other method
exists for this task that is as precise and efficient as A-DARTS.
In summary, we make the following contributions:
• We propose a time-series-specialized AutoML system called

A-DARTS to find the best imputation algorithm.
• We introduce ModelRace, the model selection component

of A-DARTS, which utilizes a two-phase pruning approach
to identify the optimal model.

• We devise two additional components to characterize incom-
plete time series and speed up their labeling with imputation
algorithms.

• We conduct a comprehensive evaluation of A-DARTS,
demonstrating that it significantly outperforms state-of-the-
art comparable systems across various datasets, particularly
by providing much tighter bounds on the variance of rec-
ommendation quality.

II. BACKGROUND AND MOTIVATION

In this section, we discuss the variety of available imputation
algorithms and the inherent difficulties of matching them to
the use cases where each performs best.

Imputation Algorithms and Dataset Labeling. Im-
puteBench [32], [42] is the most comprehensive benchmark to
date for time series imputation algorithms. It brings together
a large variety of the most advanced imputation algorithms
using the same code base and presents parameterized versions
of each that strike a balance between accuracy and runtime.
ImputeBench considers many different patterns for missing
blocks. The idea is that different shapes of missing blocks may
require different algorithms when occurring on multiple time
series. The imputation algorithms we consider in this paper
are all covered by the ImputeBench framework [43].

While ImputeBench does not recommend algorithms per
se, it can generate labeled data for training a recommendation
model. A naive solution would run a large variety of faulty
time series through the algorithms suggested by the benchmark
and obtain, for each series, how the measured algorithms
performed relative to one another. Although inefficient—a
large number of series would be necessary to cover the
many particular scenarios where missing blocks occur—this
annotated dataset is the starting point for our problem analysis.
In the latter sections of the paper, we discuss obtaining a
similar annotated dataset with a fraction of the effort.

The Model Selection Problem. With such a labeled set, a
classifier could be trained to learn the circumstances under
which each imputation algorithm performs well. Presumably,
given a metric of time series similarity, the best algorithm
for the new series should be the one that performed best for
the series used in the training set. Many candidates exist for
such a model, e.g., kNN classifier [44]. This model would use
nearest-neighbor search to match the features of the new faulty
series with previously known series features.

We evaluate whether kNN could be an adequate model in
this case by testing its efficacy—how precise its predictions
are—in distinct scenarios. We compare kNN against two com-
monly used classifiers, Multi-layer Perceptrons (MLP) [45]
and CatBoost [46], by applying a configuration that seems
sensible for the three classifiers. We report the average re-
sults from six different dataset categories: households’ elec-
tricity consumption (Power), water quality measurements in
rivers (Water), motion sensors in humans performing different
activities (Motion), weather phenomena in different Swiss
cities (Climate), electromagnetic events associated with storms
(Lightning), and human health-related data (Medical). Each
category includes multiple datasets with thousands of time
series as described in Section VII.

Power Water Motion Climate Lightning Medical
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Fig. 1: Classifier Performance on Six Dataset Categories.



TABLE I: Comparison of existing techniques. ✓: Supported. (✓): Requires non-trivial extension. ✕: Not supported.

Technique Low
Resources

Model Configuration Data Features
multiple models multiple instances multiple winners extraction scaling

FLAML [40] ✓ ✓ ✕ ✕ (✓) ✕
Tune [39] ✓ ✕ ✕ ✕ (✓) ✕

AutoFolio [38] ✓ ✕ ✕ ✕ (✓) ✕
RAHA [47] ✕ ✓ (✓) ✕ ✓ ✕

A-DARTS ✓ ✓ ✓ ✓ ✓ ✓

The results in Figure 1 show that kNN outperforms the
other classifiers for series from water and climate datasets.
It does less so for the other profiles. We also observe the
same phenomenon with the two other classifiers. No model
in this experiment performs consistently better in all cases.
At first, we suspected that the classifiers were not adequately
configured. There are two aspects to consider in this context:
a classifier can be naturally parameterizable, such as defining
the ’k’ in kNN or the number of branches in a decision tree;
and the feature dimensions should be somehow normalized.
Regarding the latter, some features are categorical, while some
are numeric. Even among numeric features, some range from
0 to 1, while others may range from -4’728 to 6’217. To
calculate meaningful Euclidean distances in a feature space,
we should assign weights to each dimension and normalize
the feature space.

The combination of available classifiers, their potential pa-
rameterization, and the myriad of different feature scalers open
a considerable search space for model selection. The manual
exploration of this large space is prohibitively expensive.

AutoML Techniques. Fortunately, efficient exploration tech-
niques exist. AutoML [37], [48] has recently emerged as an
automated solution to find the most suitable model for a given
machine learning task. It encompasses various techniques, but
in our case, we are interested in the space search mechanism
known as Model Selection. Specifically, we aim to discover
an effective combination of a classifier, its hyperparameter
configuration, and a feature scaler (a weight assigned to
each feature). In the AutoML literature, this combination is
commonly referred to as a pipeline.

In general, automatically performing Model Selection re-
quires three components: (a) a pipeline synthesizer that gen-
erates candidate pipelines, (b) a pipeline filtering strategy that
eliminates pipelines that do not meet the desired performance
metrics, and (c) a search strategy that feedbacks into the syn-
thesizer, guiding it on the types of pipelines to generate next.
We apply this approach in our case as follows. A synthesizer
generates an initial set of pipelines that the evaluator then
tests. The testing involves two phases: training the classifier
on a portion of the annotated data, e.g., 80%, and assessing its
performance using the remaining data, e.g., 20%, as ground
truth. Based on the evaluator’s scores, the search strategy
might determine that exploring slight variations of kNN, for
instance, could be beneficial. It then directs the synthesizer to
focus on generating more of those. This cycle continues until
a specified time limit or performance threshold is reached.

III. RELATED WORK

Several AutoML frameworks are available that purport to
address generic recommendation tasks. They essentially differ
in how they approach pipeline synthesis, evaluation, and search
strategy. We apply those frameworks to solve our task by
feeding them with the labeled data we generate and the time
series features we extract. We discuss next what aspects of
these frameworks make them unsuitable for our use-case and
empirically compare their performance against A-DARTS in
Section VII.

Table I provides a comparative summary of the existing
techniques we compare against, highlighting how A-DARTS
enhances the model selection landscape. The first column
“Low Resources’ assesses the computational efficiency of each
method. The second column “Model Configuration” indicates
whether the methods consider various input classifiers, allow
multiple instances of the same classifier to survive, and
incorporate a voting mechanism to choose among multiple
winners. The third column “Data Features” specifies whether
the techniques include a feature extractor and feature scaling
in the search space. A brief description of each technique is
provided below.

FLAML is a lightweight and easy-to-use AutoML frame-
work from Microsoft [40]. It configures multiple classifiers at
a time and selects a single winner pipeline. FLAML considers
all variations of a given classifier to be the same pipeline. In
other words, when it discards a given pipeline, it eliminates the
chances of any more helpful variation being selected. Similarly
to our system, FLAML generates the configurations on-the-
fly by expanding the parameter space. It builds a tree-like
representation of configurations and more eagerly explores
the branches expected to find better parameters. Each branch
represents a different classifier; thus, a unique configuration
survives the race. The configurations are iteratively trained on
a random sample of the data, and a corresponding cost value
that combines error and time is computed. FLAML compares
the cost produced by each configuration, and the training
sample is resized based on the cost improvement between
consecutive iterations.

Tune [39] is a model selection system that configures
a single classifier at a time (hand-picked by the user). It
pre-generates configurations evaluated using various search
algorithms such as Hyperband [49]. The parameter search
starts with a large set of randomly generated configurations
and iteratively decreases the size of the set. Each iteration
uniformly allocates a time budget to each configuration,



evaluates its performance, and discards the worst half until
one configuration survives. The surviving configurations from
each iteration are compared against one another, and the best-
performing one is returned.

AutoFolio [38] is yet another system that configures a single
classifier by pre-generating a list of parameter configurations.
The parameter exploration begins by generating random seed
configurations and iteratively introducing perturbations to only
one parameter of the configuration at a time. The updated
configurations are evaluated on different data partitions over a
dynamic time budget. The configuration that does not improve
the performance is discarded, and the one that yields the
best average performance across different data partitions is
recommended.

RAHA [47] is a model selection system for error detection
in relational data. It compares the performance of multiple
classifiers and recommends the configuration that best predicts
if an unseen tuple is erroneous. RAHA extracts basic statistical
features of the data such as mean, variance, etc., and uses
them to compute the similarity between the columns of the
table. A different classifier is trained for each cluster of similar
columns. The training is executed on a fraction of data clusters
that are already user-labeled with the best detection technique.
To apply RAHA to our problem, we merge RAHA’s features
with the ones we extract. We also adjust its objective function
by using the inverse of the Root Mean Squared Error (RMSE)
instead of the F1 score when computing a strategy’s score, as
the latter needs to be maximized.

A handful of model selection techniques for other time
series tasks exists. Unfortunately, none of those techniques
can be applied to our case as they operate on a single time
series partitioned into smaller subsequences.

Time series forecasting is one of the most common fields
where several model selection techniques have been pro-
posed [4], [36], [50], [51]. Those techniques operate in the
same vein, using predictors instead of classifiers. AutoAI-
TS [4] is a seminal work in this context, which trains the
predictors on some time series subsequences and infers their
performance for the remaining ones. A linear regression model
is applied to produce an upper-bound estimate of the full
training performance of the used predictors. The surviving
predictor will be used to forecast future values.

Anomaly detection in time series is another application for
model selection. In [35], the authors introduce a benchmark
for model selection techniques. They train three categories
of classifiers on time series subsequences labeled with var-
ious anomaly detection techniques. The classifiers are pre-
configured with their default values. The authors compare the
performance of the classifiers and recommend, for each type
of anomaly, the best-preforming one.

Addressing the issues of existing model selection techniques
entails navigating significantly larger pipeline search space.
We achieve this through novel, specialized search and pruning
strategies, implemented within an imputation-centric AutoML
framework that we refer to as A-DARTS.

IV. SYSTEM OVERVIEW

A-DARTS’s goal is to take a time series with missing blocks
and to recommend the best imputation technique to recover
them. The two most salient features of the framework were
motivated by our preliminary experiments: (a) the recommen-
dation is made by a voting process as opposed to a single
classifier, and (b) the pruning performed by the framework is
on a pipeline level rather than on a classifier one. Figure 2
presents A-DARTS’s main components and how they interact.
Our framework undergoes a one-time training phase before
it can be used to produce recommendations. We discuss the
training process in Section IV-A and the recommendation
process in Section IV-B.

A. Training

The training phase revolves around A-DARTS’s model
selection process, called ModelRace. The process requires hav-
ing labeled data available that associates time series/missing
block configuration with an imputation algorithm. Obtaining
this annotated data would be prohibitive in time if applied to
each time series in a dataset separately. Instead, we propose to
cluster the series according to their similarity and propagate
the labels within the clusters (step 1 in Figure 2). The detailed
clustering process will be discussed in Section VI. Once the
data is labeled, our system extracts the time series features (2)
needed to identify the best imputation technique.

Internally, ModelRace implements an iterative process to
select the best possible pipelines. The process starts with an
initial set of pipelines called seed. For initialization, the seed
must contain at least one pipeline per classifier type that needs
to be considered. The reason is that ModelRace will try to
synthesize and evaluate variations of the seed pipelines, each
containing different parameterization and feature scaling con-
figurations. To do so, it uses a component called a synthesizer
(3) to generate derived pipelines from existing ones. Each new
pipeline is then evaluated, i.e., trained on labeled data, and
then scored according to its efficacy by a scoring component
in ModelRace (4). The less-performing pipelines are filtered
out by a pruning mechanism (5) before the process starts over.
We explain the process in more detail in Section V.

B. Inference

The algorithm performing imputation on a faulty time series
can be obtained by extracting the series’ features. To that end,
we use the same feature extractor as used in training (6) and
feed that information to the winning pipelines. To select the
algorithm, a voting mechanism is applied to aggregate the rec-
ommendations of the selected pipelines (7). We experimented
with several aggregation functions. We empirically find that
using a “soft” voting mechanism provides higher scores with
most of the classifiers compared to using a standard majority
voting algorithm.

The voting procedure computes a matrix of scores where
each entry represents the probability of a given imputation
algorithm being chosen by the selected pipelines. It then
aggregates results by averaging the probabilities of different
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Fig. 2: Overview of A-DARTS, which takes time series with missing blocks as input and recommends the best imputation to
repair them. (1) It starts by labeling the time series for training and (2) extracts their features. Then, it executes the model
training where it iteratively (3) generates new pipelines, (4) defines the cut-off performance, and (5) prunes the less-performing
pipelines. Upon the execution of ModelRace, A-DARTS returns the best-performing pipelines. Next, (6) it feeds the winning
pipelines with the features of the new incomplete series and, lastly, (7) recommends the imputation technique.

pipelines for a given imputation class. The class with the
highest average is chosen as the imputation to apply to the
incomplete series.

V. MODEL SELECTION

At the heart of ModelRace lies a process that expands and
prunes the number of pipelines being considered. We present
the search algorithm that guides this process in Section V-A.
Our search algorithm heavily relies on similarity computations
between time series. We discuss the time series features we
use for such similarity calculations in detail in Section V-B.

A. ModelRace

We start by introducing the intuition behind ModelRace’s
search for competitive pipelines. ModelRace operates in an
iterative manner. It takes a seed of pipelines and synthesizes
new pipelines at each iteration. More promising pipelines
are further expanded. The synthesis is centered around the
existing pipelines such that it introduces only small changes
to the parent pipeline by modifying only one parameter at a
time. ModelRace also prunes out pipelines it deems inefficient.
Pruning is a two-phase procedure. It starts with a small per-
centage of training data and increases it at each iteration of the
algorithm. This allows the pipelines that survive the pruning
to continue training on new and unseen data. The candidates
(original and derived) are compared pairwise, and the ones
performing statistically worse than others are eliminated from
the race [52].

We now formally discuss our search and pruning strategy.
Algorithm 1 describes the pseudocode of ModelRace. The
symbols used in this and the remaining algorithms are intro-
duced in Table II. The ModelRace algorithm takes as input a
set of seed pipelines Θ with a unique set of parameter values
sampled from the set of all possible pipelines P . Assuming

TABLE II: Notations used in Algorithms 1 and 2.

Algorithm Symbols Description

Alg. 1

P set of all possible pipelines
Θ subset of pipelines
θi a pipeline {classifier, params., scaler}
S training set of features and labels
Si subset of training set
T test set
f1, r3 F1 and Recall@3 of a pipeline
time runtime of a pipeline
α, β, γ scoring coefficients

Alg. 2

X set of time series
Xi individual time series
C̃ set of clusters
Ci cluster of Xi

ρ̄(Ci) average correlation inside Ci

12 classifiers, there are 1650 possible parameterizations and
60 different feature scaling options, leading to 99’000 possible
pipelines to consider. The algorithm uses partial training sets
S = {S1, . . . , Sm}, each representing a subset of the whole
training set, and T , a test set used during evaluation.

At each iteration, we select a new partial training set Si (line
2) and expand the set of pipelines by generating new candidate
pipelines (line 3). This expansion helps fine-tune the pipelines’
parameters and scaling steps. We generate new pipelines based
on the current surviving candidates Θelite, used as seeds.

The evaluation of the pipelines is performed on different
stratified k-folds [53] to produce multiple scores per pipeline
(line 5). The stratification guarantees the same distribution
of samples/classes as in the original dataset to avoid over-
fitting. Each pipeline is trained on a small portion of the
data (line 6) and evaluated on the test set (line 7). We
compute a score using a weighted average of performance
metrics such as F1-Score and normalized runtime to maximize
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Fig. 3: ModelRace Pipeline Selection.

Algorithm 1: ModelRace
Input : Set of seed Pipelines: Θ = {θ1, . . . , θn} ∼ P,

Set of partial training data: S = {S1, . . . , Sm},
Test set: T

Output: Θelite: set of best-performing pipelines
1 Θelite = Θ
2 foreach Si ∈ S do
3 Θnew = Synthesize(Θelite) ;

▷ generate new pipelines based on Θelite

4 Θcand = Θelite ∪Θnew

5 foreach SF ∈ StratifyKFold(Si) do
6 foreach pipeline θ ∈ Θcand do
7 θ = Train(θ, SF );
8 f1, r3, time = Evaluate(θ, T );
9 scoreθ = (α·f1+β·r3)−(γ·time)

α+β+γ
;

10 scores← scores ∪ scoreθ;
11 if ∃ θ′ s.t. scoreθ ≪ scoreθ′ then
12 Θcand = Θcand \ {θ};

▷ Early termination

13 Θelite = Prune(Θcand, scores);
▷ Prune the pipelines based on T-test
comparison between the scores of all
pairs of pipelines

14 return Θelite

effectiveness while minimizing execution time (line 8). Once
the pipeline evaluation on a given fold is completed, we
search for pipelines with a significantly higher score than the
current one on the same fold. If the search is not empty, we
early terminate the current pipeline (lines 11-12), allowing the
training on the remaining folds to complete faster.

The remaining pipelines (Θcand) can still be large, as only
the worst ones are terminated early. We apply a second-
phase pruning to reduce its size further while keeping some
diversity in the results. At the end of each iteration, pairwise
significance t-tests [54] are performed on the pipeline scores
(line 13). We compare the score distributions between all pairs
of pipelines, and if the t-test considers that they are similar
with a high significance, we prune the one with the lower
average of scores. More training data is then available for

the remaining pipelines to continue training. The algorithm
terminates when all partial training sets have been used.

Figure 3 illustrates ModelRace through an example. As
introduced above, a pipeline is, in our context, a tuple <clas-
sifier, classifier hyperparameters, feature vector scaling strat-
egy>. We consider two input classifiers: k-nearest Neighbor
(kNN) and Decision Tree (DT). Their hyperparameters are the
number of neighbors (k) and the tree depth (d), respectively.
Each classifier may choose to normalize the feature values
differently, e.g., through an L1/L2-norm normalizer, a PCA-
based dimensionality reduction, etc.

We start by generating new pipelines based on the input
(Step 1 in Figure 3). For example, P1′ is generated based
on P1 by changing only the scaling to the L2-norm. Note
that this generation process is centered around the existing
pipelines such that it introduces only small changes to the
parent pipeline by modifying only one parameter at a time.

Next, we perform the training and evaluation step (2) of all
the pipelines. Once the results are obtained, we compute the
F1 score using the test set and verify if any pipelines perform
significantly worse than the others. In our case, P1′ has a very
low F1 compared to the best result. At this point, we apply
early termination on P1′, which is eliminated from the race.

The last step is the second phase of pruning (3). Using
previously obtained scores, we rank the remaining pipelines
according to the average results of pairwise t-tests. Only P3′

and P1 survive this phase of pruning. Next, we augment the
training subset with more time series and repeat the process
again, starting with the generation procedure until we exhaust
all the training subsets, as described in step (4).

Complexity Analysis. The pipeline selection iterates over
m = |S| folds. Each iteration invokes the training of n
pipelines, each over k stratified folds. Since at each iteration
only a small fraction of the whole training set is used until it
reaches the full size and k is set to a small constant, the worst
case time complexity is O(n× |S|).

ModelRace keeps in memory the training set, the pipelines,
and their evaluation scores. Since the number of pipelines
decreases with the iterations, the space complexity is linear
with the size of the training set.



B. Feature Extraction for Imputation

As mentioned earlier, A-DARTS provides a configuration-
free recommendation for imputing missing values. The best
recommendation is obtained by feeding parameterized clas-
sifiers with the relevant features. Those features help the
classifiers assign the same imputation algorithm to similar time
series. Feature extraction is a well-studied problem in some
time series tasks such as clustering [55] or forecasting [50].
We build upon this line of research and introduce a new set
of features for imputation.

We curate a set of existing statistical features and group
them into two representative categories: statistical and topo-
logical. The topological features need is evident in early
experiments, where we notice that classifiers that rely solely on
statistical features perform poorly. Ultimately, the combination
of both types of features is what allows our system to
accurately identify the time series properties that impact the
imputation process.

Statistical Features. We extract a list of statistical features by
concatenating various feature extraction tools (e.g., TSFresh,
Catch22, or Kats) [56]. We explain those features using a
coarse-grained categorization.

Canonical. This category includes measures summarizing
time series basic statistical measures such as mean or variance.
They serve as an indicator of the data evolution of over time.

Dependencies. This category encompasses measures that
capture dependencies in time series, such as auto-correlation.
Those dependencies occur within the time series at different
time intervals.

Trends. The values describe the seasonality and frequency of
a time series. Linear transformation methods, such as Principal
Components (PCA) [57], that help detect the data trend also
belong to this group.

Topological Features. Topology pertains to the shape of the
data, which is, unfortunately, not covered by any statistical fea-
ture. Feeding the classifiers with this property allows them to
include the visual resemblance in the similarity computation.
Several properties can contribute to the definition of shape in
time series. The temporal order of the values is one example
that heavily impacts the performance of some imputation
techniques. Statistical measures cannot capture the order of
the data, as they are time-agnostic. Perturbation is another
example of shape-based properties that are not detectable by
any statistical extractor. It identifies whether a time series has
changed its trend due, for example, to a sensor malfunction.

We built a new topological extractor that maps time series
onto a multidimensional space, which captures the shape of
the series. Our topological extractor extends Topological Data
Analysis (TDA) [58] to time series data. Figure 4 illustrates
the main steps of the process. First, we embed the input time
series into a time-delay space that captures their non-linear
relationships. We achieve this by mapping each time series
X = {(t1, v1), . . . , (tm, vm)} into a sequence of vectors (see
Figure 4b). Each new time series will have the form of vτp (j) =

(vj , vj+τ , . . . , vj+(d−1)τ ), where τ is the time shift, and d is
the embedding dimension.
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Fig. 4: Topological Feature Extraction.

After embedding the time series, we construct a persistence
diagram (cf. Figure 4c) [59]. This diagram captures the birth
and death of each pattern in the time series. Those patterns
correspond to the “holes” visible in the embedding. More
specifically, each point (bi, di) on the diagram represents a
pattern where bi is the time of its birth, di is the time of
its death, and di − bi > 0 is the span of time over which it
was alive. Finally, we use the distributions of points in the
persistence diagram as topological features.

VI. DATA LABELING

The ModelRace process outlined above relies on on access
to a large and diverse dataset of labeled time series. To
facilitate labeling, we cluster time series and label them at
a cluster level. We start this section with an intuitive example
of how the clustering algorithm works in Section VI-A. The
algorithm has two phases: one in which we construct an initial
set of clusters, which we discuss in Section VI-B, and one in
which we refine the clusters, described in Section VI-C.

A. Clustering Intuition

Given the vast number of time series we consider—more
than 67k—it would be unfeasible to apply all imputation
algorithms on each individual series. For instance, the results
presented in [32] were derived from just 260 time series and
required several days to compute.

Instead, we draw on an existing approach for a similar
problem [47] and propose approximating the labeling results.
A-DARTS clusters times series and labels a representative
series from each cluster, propagating the label to the other
series from the same cluster. This labeling process can leverage
shape-based clustering [60], which groups time series with
similar shapes. A popular method, K-shape [61], utilizes time
series cross-correlation to estimate shape similarity, given a
predefined number of clusters. However, determining a desir-
able number of clusters is challenging due to the diverse nature
of the time series datasets and their application domains. To
address this, we propose an incremental splitting approach to
identify the optimal number of clusters.

We illustrate in Figure 5 the two phases of our iterative
clustering process, initial and refined clustering, using eight
time series and their cross-correlation as a similarity measure.

In the first phase, we cluster the input time series into several
clusters based on their similarity. This produces three different
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Fig. 5: Example of Incremental Clustering using Eight Time
Series.

clusters C1, C2, and C3. The second iteration will further
cluster the time series inside C2 into two different clusters, C4
and C5. Therefore, the first phase produces four intermediate
clusters: C1, C3, C4, and C5.

The second phase reduces the number of clusters while
maintaining a high series similarity. It does so by redistributing
some series and merging small clusters. For instance, we move
T3 from C5 to C3, as this will further increase the similarity
inside C3. Following the same rationale, we merge C4 with
the updated C5. We obtain three clusters at the end of this
phase: C1, C3, and C6.

We now present and discuss each phase of the clustering
algorithm in more detail.

B. Initial Clustering Phase

Algorithm 2 describes the pseudo-code for our clustering
algorithm. The initial phase is described in lines 2-8. It checks
whether the time series within each cluster are not highly
correlated (line 4). In that case, it dynamically divides the
cluster into sub-clusters (line 5). The number of subclusters is
the product between the size of the cluster and the estimated
percentage of time series in the cluster, p. We empirically
set this ratio to 20%. The resulting clusters are added to a
pending ensembles’ list S (line 6), which contains the set of
time series that do not yet form final clusters. This process is
repeated until it reaches the desirable average correlation.

This initial clustering phase yields either many mono-
sequences or small clusters, as it tries to maximize the
correlation inside clusters. This incurs a high runtime since
the imputation benchmark will need to perform more runs to
label the data. We address this issue by applying a merging
phase that minimizes the number of produced clusters while
maintaining a high correlation.

C. Refining Phase

For each small cluster, we evaluate the correlation gain that
would result from merging it with another one (line 10). In
case of positive gain, we merge the two clusters (lines 11-12).
If no such cluster exists, we evaluate each series separately in
the same way and move an individual series instead (lines 15-
17). In case no cluster yields any positive gain, the sequences
remain in their original cluster.

Algorithm 2: Incremental Clustering
Input : Set of time series X = {X1, . . . , Xn}
Output: List of clusters C

1 C ← ∅ ;
2 S← {X};
3 while S ̸= ∅ do
4 Clast =Pop(S);
5 if ρ̄(Clast) < δ then
6 Ctemp ← cluster(Clast,max(2, p× |Clast|)) ;
7 S← S ∪ Ctemp ;

8 else
9 C ← C ∪ Clast ;

10 foreach Cluster Ci ∈ C do
11 C∗ = arg max

Cj ̸=Ci

∆Gij ;

12 if ∆Gij > 0 then
13 C∗ ← C∗ ∪ Ci ▷ merge clusters

14 else
15 foreach series X ∈ Ci do
16 C∗ = arg max

Cj∪{X}
∆Gij

17 if ∆Gij > 0 then
18 C∗ ← C∗ ∪ {X} ▷ move into new

cluster

19 return C;

We note that our merging procedure reorganizes the cluster-
ing using two operations: merge and move. These operations
are based on maximizing the correlation gain (CG) between
clusters. CG borrows its intuition from the concept of modu-
larity, which is used in the popular Louvain graph clustering
algorithm [62], and extends it to time series. We now define
the correlation gain formally.

Definition 1: Let Ci and Cj be two clusters in a dataset
D, ρ̄(Ci) and ρ̄(Cj) the average correlations between all time
series pairs in Ci and Cj , respectively, and m the total number
of time series in D. The correlation gain of merging Ci with
Cj is defined as:

∆Gij =
1

2m
(ρ̄(Ci ∪ Cj)−

ρ̄(Ci)× ρ̄(Cj)

m
) (1)

In case we move one sequence X ∈ Ci to another cluster,
then ρ̄(Ci ∪ Cj) is equal to ρ̄({X} ∪ Cj).

The correlation gain clusters together the most similar time
series by computing the cross-correlation before the move
(second term of Eq. 1) and the potential correlation after the
move (first term of Eq. 1). The difference between the two
terms measures the gain of merging the clusters.

The merging process based on correlation gain has two
important properties. First, the gain is monotonic thanks to
the greedy maximization of the correlation. Second, the move
and merge procedure is guaranteed to terminate since a time
series that moves out of a cluster never moves back into it,
otherwise, the gain would become negative.



VII. EXPERIMENTS

In this section, we validate our technical contributions
based on a series of experiments. The experiments are di-
vided mainly into two sets. The first set aims to contrast
A-DARTS with comparable systems. We start by evaluating
how representative the datasets we use in the experiments
are (Section VII-A). Once that is established, we compare A-
DARTS’s recommendations efficacy to that of other systems
(Sections VII-B and VII-C) as well as their relative running
time (Section VII-D). This set of experiments shows that A-
DARTS systematically offers better recommendations without
incurring additional runtime costs.

In the second experiment set, we assess how different
components of A-DARTS contribute to its efficacy and running
time. We investigate the importance of our feature selection
(Section VII-E1), pipeline scoring (Section VII-E2), and clus-
tering techniques (Section VII-E3). This set of experiments
shows that every component of A-DARTS has a measurable
impact on the final recommendation and is properly tuned.

In the last set of experiments, we evaluate the downstream
impact of choosing the appropriate imputation technique on
forecasting (Section VII-F). The downstream experiments re-
veal that our tool improves not only the upstream analysis but
also the downstream one.

Experimental Setup. All the experiments were run on an
Ubuntu 18.04 Linux machine with a 2.1 GHz Intel Xeon E5-
2620 processor and 128 GB of main memory. The processor
comprises six physical cores and carries 15 MB of LLC. The
code and data involved in A-DARTS and the experiments are
publicly available1.

Efficacy Metrics. We report our results using standard metrics
such as Accuracy, Precision, Recall, and F1-score (bold letters
will be used as acronyms in charts). For each metric, we
compute a weighted average to account for the label imbal-
ance between the imputation techniques during the labeling.
In addition to those metrics, we use the Mean Reciprocal
Rank (MRR) to compute the ranking of the recommended
techniques. Formally, let Q be the queries (test set) and ranki
be the position at which the “correct” imputation technique is
predicted, then:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

A. Datasets Description

We aimed to gather a diverse set of real-world time series
that cover a broad spectrum of characteristics. The data
consists of 107 datasets, each containing several hundred time
series of different lengths and properties, amounting to a
total of 67K series. The data originates from various sources
including the TSC repository [63], the UCR repository [64],
the UCI repository [65], and ImputeBench [32]. We group

1https://github.com/eXascaleInfolab/recimpute

the datasets into six categories based on their domain and
summarize the key properties of each category below:
• Power. This category encompasses household electricity

consumption data recorded in different countries. The data is
collected using smart meters allowing automated collection
at fine-grained time intervals. The electricity time series are
periodic, and some are shifted in time.

• Water. This category consists of water quality measurements
such as discharge, conductivity, oxygen level, and pH value,
provided by the BundesAmt Für Umwelt (BAFU) [66], the
Swiss Federal Office for the Environment. Water time series
contain synchronized trends and sporadic anomalies.

• Motion. This category includes time series originating from
various motion sensors, such as accelerometers or gyro-
scopes, that capture body movements. Motion time series
contain erratic fluctuations and varying frequency.

• Climate. The time series in this group describe various
weather phenomena (such as temperature or precipitation)
provided by the Swiss Federal Office of Meteorology and
Climatology collected from different Swiss cities from 1974
to 2015. Climate time series are periodic and exhibit very
high correlation.

• Lightning. This category contains electromagnetic events
associated with lightning using optical and radio-frequency
(RF) instruments. It provides time series collected at a high
rate (50 MHz), which have mixed correlation (high/low,
positive/negative) and exhibit partial trend similarities.

• Medical. This category represents various human health-
related data such as ECG and hemodynamics (blood flow
such as airway pressure, arterial blood pressure, or central
venous pressure). Medical time series are measured at high
frequency (250Hz) and present aligned and shifted trends.
The datasets were amassed to ensure sufficient representa-

tion of each of the 430 features used by A-DARTS. To that
end, we normalize each feature value to the range [0, 1], divide
the interval into k buckets, and compute the number of buckets
covered by the time series across our 107 datasets. The results
of this experiment are shown in Figure 6 with features plotted
on the y-axis and the datasets (in no particular order) plotted
on the x-axis.
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Fig. 6: Feature Coverage Heatmap.

We observe that all the features are covered by at least one

https://github.com/eXascaleInfolab/recimpute


dataset and each time series covers a different combination of
features. Some features, such as the ones in lines 63-81, are
predominantly present in all the time series. Those features
correspond to binary features, such as whether the distribution
of values is symmetric, which naturally occur in many time
series. We also observe other features, which can be seen
in lines 320-330, which are covered by fewer time series.
Those features correspond to peculiar features such as sudden
changes or noise.

B. Recommendation Efficacy

In the next experiment, we compare our system against the
four AutoML frameworks: FLAML [40], Tune [39], AutoFo-
lio [67], and RAHA [47], introduced in Section III. We adapt
those systems to apply to the task of recommending imputation
techniques for time series. We do so by training all the systems
on our labeled data and feeding the ones that do not implement
any feature extraction with our set of features. We experiment
with various versions of the baselines and report their results
under their optimal setup.

We test 12 different classifiers ranging from standard k-
nearest-neighbors (kNN) [44], decision trees (DT) [68], and
multi-layer perceptrons (MLP) [45] to more recent, sophisti-
cated ones such as CatBoost [46]. We report the recommenda-
tion quality using a sample holdout strategy on each category
with a 65/35 splitting ratio. We create synthetic missing blocks
of varying sizes on each series and compare the recommended
imputation technique against the ground truth. Figure 7 shows
the average F1 scores (marked as points) and the standard
deviation (marked as an interval).
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Fig. 7: Average Efficacy Performance.

We observe that A-DARTS yields the highest average F1
and achieves 20% F1 gain compared to its closest competitor,
FLAML. Our technique also produces the tightest F1 bounds
and is about 2.5x more stable than the second-best technique.
This stems from the fact that A-DARTS can easily accommo-
date any dataset, as we will show next.

C. Recommendation Efficacy Breakdown

We break down in table III the efficacy of each system using
all metrics grouped by dataset category. The results show that
A-DARTS outperforms all the baselines on all datasets. The
results also show that recommendation performance depends
on the properties of the time series, and three performance
trends emerge.

TABLE III: Efficacy comparison of the recommendation per
dataset. The best results are highlighted in bold, and the
second-best results are marked by ‘+’.

Dataset System Efficacy Metric
A P R F1 MRR

Power

RAHA 0.42 0.48 0.42 0.44 0.58+
AutoFolio 0.67+ 0.63 0.63 0.63 -
Tune 0.66 0.62 0.66 0.63 -
FLAML 0.67+ 0.64+ 0.68+ 0.65+ -
A-DARTS 0.70 0.66 0.70 0.76 0.81

Water

RAHA 0.64+ 0.79+ 0.64+ 0.69+ 0.77+
AutoFolio 0.20 0.12 0.20 0.14 -
Tune 0.58 0.62 0.59 0.59 -
FLAML 0.29 0.33 0.29 0.25 -
A-DARTS 0.81 0.92 0.81 0.84 0.89

Motion

RAHA 0.43 0.48 0.43 0.45 0.62+
AutoFolio 0.73 0.71 0.73 0.71 -
Tune 0.73 0.71 0.73 0.72 -
FLAML 0.75+ 0.73+ 0.75+ 0.73+ -
A-DARTS 0.78 0.77 0.78 0.77 0.78

Climate

RAHA 0.35 0.49 0.35 0.38 0.52+
AutoFolio 0.85 0.86 0.85 0.84 -
Tune 0.85 0.87 0.85 0.85 -
FLAML 0.88+ 0.89+ 0.88+ 0.88+ -
A-DARTS 0.92 0.92 0.92 0.92 0.96

Lightning

RAHA 0.52 0.46 0.52 0.47 0.70+
AutoFolio 0.32 0.52 0.32 0.32 -
Tune 0.46 0.43 0.46 0.41 -
FLAML 0.57+ 0.52+ 0.57+ 0.51+ -
A-DARTS 0.68 0.63 0.68 0.66 0.81

Medical

RAHA 0.88 0.92 0.88 0.90 0.91+
AutoFolio 0.94 0.94+ 0.94 0.93 -
Tune 0.94 0.94+ 0.94 0.94+ -
FLAML 0.95+ 0.94+ 0.95+ 0.94+ -
A-DARTS 0.96 0.96 0.96 0.96 0.98

High Variability Datasets. In some categories, the difference
between A-DARTS and the baselines is very high. In the Water
dataset, for example, A-DARTS achieves an F1 of 0.84, while
the second-best technique, RAHA, achieves an F1 of 0.69.
FLAML produces a very low F1 of 0.25. As explained earlier,
Water is a complex dataset that contains a high number of
anomalies. Our system can easily capture those data inconsis-
tencies thanks to the different feature scalers it considers. We
observe similar trends in the Lightning dataset, but a smaller
gap as this dataset contains fewer data inconsistencies.

Moderate Variability Datasets. In Power and Motion, the
performance of the baselines improves, but the performance
difference is still noticeable. For instance, in the Power dataset,
A-DARTS is 15% more effective than FLAML (0.76 vs. 0.65).
Those datasets include features, such as time shifts or varying
frequencies, which are difficult to process by imputation
techniques [69].

Ranked Results Availability. Only A-DARTS and RAHA
can provide a ranked list of recommendations (MRR). Our
system accurately recommends the best imputation method
and systematically computes the correct ranking of imputation
techniques, achieving an average MRR value of 0.87. This
means that it finds the correct ranking in 87% of the cases,
yielding 28% improvement in MRR compared to RAHA,
which returns an MRR of 0.68.



D. Recommendation Efficiency

In addition to effectiveness, we evaluate the elapsed running
time (wall clock) to select a model, train it, and produce
the recommendation in the previous experiment. We vary the
number of seed pipelines for ModelRace, which impacts the
total runtime, instead of varying the number or length of the
time series. We also report the average F1 values. Figure 8a
depicts the results of this experiment.
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Fig. 8: Recommendation Running Time vs. Efficacy.

We observe that up to 30 pipelines, A-DARTS is 1.35x
and 1.6x faster than FLAML and AutoFolio, respectively. For
such a number of input pipelines, the pruning helps keep a
relatively low number of configurations. For a higher number
of pipelines, FLAML becomes, on average, 1.3x faster than
our system. This is expected as our system explores a larger
search space of pipeline configurations. Tune is an order
of magnitude faster than the other systems, as it needs to
configure only one classifier with no scaling steps. This low
running time, however, comes with a low accuracy cost, as
shown in Table III.

The impact of the number of pipelines on the recommenda-
tion quality, measured as F1 scores, appears in Figure 8b. We
observe that increasing the number of pipelines does not only
increase F1 but also the stability of our recommendation—the
standard deviation is monotonically decreasing. Using more
pipelines adds more diversity to the selection process, allowing
our system to find better pipelines.

This experiment shows another important property of A-
DARTS. Counter-intuitively, our system allows duplicate clas-
sifiers to be selected for voting. In this experiment in particular,
in some instances, A-DARTS picks three of the available
12 classifiers—and two duplicates. The duplicates allow the
same classifier to be configured differently by varying the
parameters and scaling steps. It is this diversity that contributes
to the low variability we observe in Figure 8b. Our analysis
also shows that no particular classifier stands out, and the type
of the chosen classifier heavily depends on the properties of
the time series data.

E. Ablation Study

We now turn our attention to a series of micro-benchmarks
that determine the importance of different A-DARTS compo-
nents in the results shown above.

1) Effects of Varying Feature Selection: In this experiment,
we feed ModelRace with different configurations of feature
sets and determine its performance. We consider three config-
uration sets: i) statistical features only, ii) topological features
only, and iii) a combination of both feature sets. Figure 9
depicts the results for each dataset category.
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Fig. 9: Feature Analysis.

We observe that in categories with complex properties,
such as Water or Lightning, both categories of features are
needed to characterize the time series properly. The similarity
between time series, in this case, is much harder to compute
using statistical measures only, thus the need to leverage the
shape of the data. Using only statistical features can be viable
occasionally, e.g., in categories with simple properties such as
the Motion dataset.

2) Effects of Pipeline Scoring Alternatives: The pruning
mechanism relies on a scoring function that assigns a weight
to the evaluated pipelines (see Line 9 in Algorithm 1). We
evaluate this function by varying its coefficients α and γ
through two experiments. When we vary one coefficient, we
set the remaining ones to a constant value. Note that we use
two y axes: the first one for F1 and the second for runtime.
We report the results of these experiments in Figure 10.
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Fig. 10: Score Function.

The results shown in Figure 10a show that increasing α has
a similar impact on F1 and CPU. This is expected, as this
increase gives more weight to the most effective pipelines,
which are the more time-consuming ones—they have more
parameters to set. Setting α above 0.5 does not significantly
increase F1 while incurring significant runtime overhead.

The results of the second experiment in Figure 10b are
generally aligned with those in Figure 10a and we identify
two main results. First, varying γ between 0 and 0.75 does not
substantially affect the effectiveness of the system. At γ = 1,
we notice a significant decrease in F1 due to prioritizing the



runtime of the pipelines too much. The CPU curve follows a
downward trend, but the runtime yields no significant decrease
beyond 0.75.

The optimal trade-off between selecting effective and effi-
cient pipelines is achieved by setting α and γ to 0.5 and 0.75,
respectively. This configuration allows ModelRace to give a
slightly higher priority to faster pipelines with no negative
impact on F1. Thus, our system can find pipelines with an
acceptable quality even if the runtime is given priority. This
occurs because many pipelines have similar effectiveness but
different runtimes.

3) Effects of Varying the Clustering Techniques: In this
section, we evaluate our incremental clustering (used for
labeling) and compare it against three variants of K-shape [61]:
default (k = 8), grid search, and iterative. We report the results
using two y-axes. The first y-axis shows the cluster average
correlation (the higher, the better), while the second y-axis
shows the runtime. Note that we do not report F1 since we
cannot compare recommendations using different clusterings.
Figure 11 shows the result of this experiment.
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Fig. 11: Clustering Performance.

Figure 11a shows that our incremental clustering yields
clusters with highly correlated time series (correlation = 0.87)
in a reasonable runtime. k-shape performs a very efficient
clustering with a relatively low cross-correlation between the
time series (correlation = 0.61). Such a low correlation hinders
the labeling step, as all time series will be assigned the same
imputation technique despite exhibiting different trends. Using
grid search improves the correlation of k-shape but incurs a
very high runtime.

Finally, we provide a deeper analysis of the clustering
results by computing the number of final clusters. The results
in Figure 11b show that our solution produces the closest
number of clusters to the ground truth obtained through a grid
search. The high correlation produced by the iterative solution
comes with a very high number of clusters. Such a high
number incurs a prohibitive execution time for the labeling
step, which will be performed more times than needed. K-
shape assigns all the time series to a small number of clusters,
which hinders the quality of data labeling.

F. Downstream Analysis

In this last experiment, we evaluate the impact of rec-
ommending imputation algorithms on downstream tasks. We
focus on forecasting and evaluate the impact using seven

forecasting datasets collected from different sources, including
the Monash benchmark [70]. We create random blocks at the
tip of each time series with the size of 20% and use A-DARTS
to recommend the best imputation algorithm. We compare
the forecasting results on a horizon of 12 observations of
the repaired series with and without A-DARTS. The latter
simulates the recommendation introduced in [32] by construct-
ing a binary vector that defines the recommendation axis and
computing its dot product with each algorithm’s score vector.
The algorithm yielding the highest score is then recommended.
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Fig. 12: Impact on Time Series Forecasting.

Figure 12 depicts the Symmetric Mean Absolute Percentage
Error (sMAPE) [36] results for each dataset (the lower the
better). We observe that A-DARTS substantially improves the
forecasting task, on average, by 55%. The gain ranges between
28% (0.97 vs. 1.32) in the ATM dataset and 80% (0.12 vs.
0.64) in the Paris mobility dataset. The highest difference
in sMAPE is observed in the Weather dataset (0.49 vs.
1.47). The datasets with the highest gains contain time series
with complex features, which require a specialized imputation
algorithm. The downstream improvement is explained by the
fact that the performance of forecasters heavily depends on
how well the data has been repaired and, thus, the choice
of the imputation algorithm. A-DARTS restores the ability of
forecasters to learn the trends of the time series.

VIII. CONCLUSION

This paper introduces A-DARTS, a system that automat-
ically selects a suitable repair technique for a new time
series. Without A-DARTS, users have to manually identify
which imputation technique could be best suited to every
new incoming time series. After being adequately trained, A-
DARTS can perform such a recommendation automatically,
with high accuracy and minimal runtime overhead. It substan-
tially improves F1 by 20% and is 2.5x more stable than the
state of the art in model selection. It also drastically improves
downstream tasks, such as forecasting, by 55%.

To develop A-DARTS, we proposed several innovative
techniques, chief among them ModelRace, which sifts through
a vast pool of configurations to efficiently identify the ideal
repair technique. Our techniques allow ModelRace to quickly
and efficiently learn which are the best classifiers and under
which conditions. In the future, we intend to continue this
line of work by looking into novel techniques that would
automatically detect the types of missing patterns and include
them as additional features to the recommendation process.
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