RecovDB: accurate and efficient missing blocks
recovery for large time series

Ines Arous, Mourad Khayati, Philippe Cudré-Mauroux

University of Fribourg
Fribourg, Switzerland
{ines.arous, mourad.khayati, pcm} @unifr.ch

Abstract—With the emergence of the Internet of Things (IoT),
time series data has become ubiquitous in our daily life. Making
sense of time series is a topic of great interest in many domains.
Existing time series analysis applications generally assume or
even require perfect time series (i.e. regular time intervals without
unknown values), but real-world time series are rarely so neat.
They often contain “holes” of different sizes (i.e. single missing
values, or blocks of consecutive missing values) due to some
failures or irregular time intervals. Hence, missing value recovery
is a prerequisite for many time series analysis applications.

In this demo, we present RECOVDB, a relational database
system enhanced with advanced matrix decomposition technology
for missing blocks recovery. This demo will show the main
features of RECOVDB that are important for today’s time
series analysis but are lacking in state-of-the-art technologies:
i) recovering large missing blocks in multiple time series at once;
ii) achieving high recovery accuracy by benefiting from different
correlations across time series; iii) maintaining recovery accuracy
under increasing size of missing blocks; iv) maintaining recovery
efficiency with increasing time series’ lengths and the number
of time series; and iv) supporting all these features while being
parameter-free. In this paper, we also compare the efficiency and
accuracy of RECOVDB against state-of-the-art recovery systems.

I. INTRODUCTION

Our work is motivated by the properties of acquired data and
the requirements for their subsequent analysis in many real-
world use cases. Consider for instance meteorology in which
sensors are used to record various weather conditions to per-
form weather forecast. For example, Figure 1 shows three time
series containing temperature and humidity values measured
in the city of Basel, Switzerland during 2017 — 2018'. When
analyzing such meteorological time series, there are a number
of important aspects to take into account. First, within the
same (scientific) domain, different time series often exhibit
some types of correlations. In Figure 1, the two temperature
time series, “Temp. 2017 and “Temp. 2018, have a positive
correlation with each other, while they both have a negative
correlation with the humidity time series “Humidity 2018”.
Second, real-world time series often contain a large number of
blocks of missing values due to sensor failures, power outages,
transmission problems, etc. Some missing blocks can be rather
big (shown as dashed lines in Figure 1), because, for instance,
it can take minutes, hours or even days for a broken sensor to
be replaced. Finally, many of the analysis tools and prediction

ISource: https://www.meteoblue.com

Ying Zhang, Martin Kersten, Svetlin Stalinlov
MonetDB Solutions
Amsterdam, the Netherlands
{zhang, kersten, stalinlov}@monetdbsolutions.com

Temp. 2017 Temp. 2018 —— Humidity 2018 ——
25 ¢ ¢ T —
2 a
1.5
1 W
e 0.3
$.05
-1
1.5
-2
25 i L P L L L f— TR R R S 7
11/03 11/03 11/03 11/03 11/04 11/04 11/04 11/04
02:00 08:00 14:00 20:00 02:00 08:00 14:00 20:00

timestamp (hourly)

Fig. 1: Meteorological time series of temperature and humidity
values measured in Basel, Switzerland during 2017 — 2018.
The missing blocks are denoted by dashed lines.

models that meteorologists use to perform weather forecast
require complete time series (i.e. the set of the input time
series must have the same length, same time interval and all
values are known).

In addition, even if a tool can work with incomplete time
series, missing values are considered harmful. For instance,
missing values often yield incorrect or ill-defined query re-
sults [1]. Also, missing values can unexpectedly introduce
bias into the time series which might significantly alter their
statistical properties, such as the correlations between time
series. This in turn can affect further data analysis tasks,
e.g. data sampling, exploration and prediction, rendering their
results pointless.

Given the amount of data we nowadays need to deal with
and the requirements of existing models/tools, efficient and
accurate recovery of large missing blocks in time series has
become a prerequisite to enable the work of many analytical
applications.

Existing recovery techniques have several drawbacks. They
either focus on repairing very small missing blocks (i.e.,
single missing values or only a handful of consecutive missing
values) which generally can not yield a high accuracy when
applied on big missing blocks [2], or they repair individual
time series, while ignoring their correlations with other similar
time series [3]. This limits the recovery accuracy, because
in many systems today, multiple sensors are used to record
the same/similar measurement, which makes using correlation
beneficial in many applications such as error detection or
missing values recovery.

Moreover, existing techniques are often stand-alone, as
opposed to being integrated into a database system. As a result
of this, the users of these tools have to conduct a number
of time consuming and error-prune tasks themselves, such as
either export/import time series from/into a database or do all
data management work themselves, repeatedly load the data
files and convert them to some internal format, and write code
for every action that needs to be conducted on the time series
(e.g. filtering and aggregations).

To overcome the aforementioned problems, we built
RecovDB, a relational database system (RDBMS) enhanced
with advanced missing blocks recovery technology, which is
based on our memory-efficient matrix decomposition tech-
nique, the Centroid Decomposition (CD) [4], to perform
scalable and accurate recovery of missing values. The recovery
algorithm has been tightly integrated into the open-source
analytical RDBMS MonetDB [5] as native User Defined Func-
tions (UDFs), which enables zero data conversion and transfer
costs>. With this architecture, REcovDB has a number of
properties that are highly desirable for missing blocks recovery
in large time series, which many of the existing recovery
techniques fall short in providing (one or a combination of):
Parameter-free recovery Parametric recovery techniques are

based on fine-tuning some input parameters which re-
quires an expertise of the application field and the types
of time series. RECOvDB avoids parameter tuning by
performing recovery based on the centroid value of all
time series. The centroid value is the only statistical
property we use for the recovery.

Correlation-aware recovery The CD algorithm embeds the
correlation across time series yielding a recovery with
better performance and higher accuracy.

Large missing blocks in multiple time series By using ad-
vanced matrix decomposition technique, RECOVDB is
capable of accurately recovering multiple time series with
large missing blocks in one go, something that cannot
be handled well by standard statistical methods such as
interpolations.

Full-fledged DBMS support Due to the tight integration,
RecovDB can exploit MonetDB’s full power as a highly
optimized analytical RDBMS to handle the remaining
data management and pre-/post-processing work.

In this demo, we will show all the above features using
real-world datasets through an interactive GUI. The demo
contains three incremental scenario’s. Scenario 1 shows that
REecovDB can recover multiple time series in one go. Scenario
2 shows that REcovDB maintains the recovery accuracy high
when increasing sizes of missing blocks. Scenario 3 shows
that even with more and/or longer time series, REcovDB
can still recover the missing blocks efficiently. For all three
scenarios, a visitor merely needs to select the desired time
series and press the "Recover" button. Finally the demo will
be accompanied by a poster to elaborate on how the CD and
recovery algorithms work.

2MonetDB is implemented in C and its internal data storage is a single
C-array per column.

The remainder of this paper is organized as follows. Sec-
tion II describes our recovery algorithm. Section III describes
the implementation of REcovDB and presents some evalua-
tion results against two state-of-the-art systems on recovery
efficiency and accuracy. Section IV elaborates the demo sce-
nario’s. Finally, Section V concludes.

II. MISSING VALUES RECOVERY

The recovery algorithm is based on our memory-efficient
algorithm to compute the Centroid Decomposition (CD) for
long time series [4]. This section first defines several basic
concepts used in CD, before describing the recovery algorithm.

Centroid Decomposition (CD). Let X be an n x m matrix
containing m time series each with n numerical values. CD
decomposes X into an n X m matrix L and an m X m matrix
R st. X =L-RT, where R is the transpose of R. Given a
vector Z, the function CD(X, Z, k) returns the first k columns
of L and R s.t. their product X is an approximation of X.

The most challenging part of computing the CD of X is to
find the maximizing sign vector Z, which contains only 1s and
—1s, that maximizes the centroid value | X*-Z||, where X
is the transpose of X and ||-|| denotes the norm of a vector.
To efficiently compute Z, we use our Scalable Sign Vector
(SSV) algorithm [4], which embeds the correlation across time
series without constructing the correlation matrix. The SSV
algorithm maintains linear complexity for both time and space
with an increasing number of time series.

Recovery Algorithm. Algorithm 1 depicts our recovery al-
gorithm RecovM. It uses CD to recover missing values in
multiple time series in one go. RecovM takes as input a matrix
X and a list 7~ of pairs indicating the rows and columns of
the missing values in X. The recovery starts by initializing the
missing values using linear interpolation (line 1). Then, we
use SSV to efficiently compute Z (line 2), which is then used
to compute the approximated matrix X (lines 4-6). Finally,
the values in X with positions in 7~ are updated with their
corresponding ones in X (lines 6-8). The recovery process
continues until the Frobenius difference || X — X'|| (defined
as: /Y i, (z; — x})?, where z; € X, z/; € X') between X
and X’ falls below a small threshold € (by default 107°) (lines
3-9).

Algorithm 1: RecovM(X, T7)

Input :n x m matrix X; List of missing time points 7"
Output: Matrix with recovered values X
1 Linearly interpolate all missing values in X;
2 Z = 8SSVX); k:=1;
3 repeat
4 X' =X;
5 L, R := CDX',Z,k);
6 X =L -R7;
// Update missing values
7 foreach (i,j) € T do

8 L Tij = 577;3';
9 until |[X — X'||r < ¢
10 return X;

III. IMPLEMENTATION AND EVALUATION

Implementation. RecovDB is implemented using MonetDB,
an open-source RDBMS optimized for in-memory processing
of analytical workloads [5]. Internally, MonetDB stores the
data of each SQL column as a single C array. This columnar
storage model matches nicely with time series data.

CREATE TABLE tss(ts timestamp, v1 float, .., vn float);
CREATE FUNCTION recov(ts timestamp, vl float, .., vn float)
RETURNS TABLE (ts timestamp, fl1 float, .., fn float) ...;

SELECT = FROM recov ((SELECT ts, vl, v3, v7 FROM tss
WHERE ts BETWEEN $TS_MIN AND $TS_MAX));

The SQL queries above show a skeleton of the implementation.
First, we store all time series of one dataset in a single table’
containing one timestamp column and a number of value
columns to hold the values of the time series (after some
preprocessing to align the timestamps). Then, we implemented
RecovM (see Algorithm 1) and its auxiliary functions as native
SQL UDFs in MonetDB. The table returning function recov
is a wrapper for RecovM. It takes one column of timestamps
and multiple columns of time series values containing NULLs
as missing blocks as its inputs, and passes the value columns
to RecovM for imputation. The recovered time series are
returned together with the original timestamps in a single
table*. Finally, we use recov in a SELECT query to recover
the values of three time series within a given time period.

Evaluation. To evaluate the efficiency and accuracy of
RecovDB, we have conducted extensive experiments against
two state-of-the-art systems in missing value imputation: Im-
puteDB [1] and BayesDB [6]. We measure i) the runtime
to perform the full recovery, and ii) the accuracy of the
recovery using the Root Mean Square Error (RMSE) between
the original block and the recovered one.

We used the BAFU dataset provided by the BundesAmt Fiir
Umwelt (the Swiss Federal Office for the Environment)’. This
dataset contains water discharge time series of 12 different
Swiss rivers recorded every 30 min during 2010 — 2015 re-
sulting in 80k records per time series. The Pearson Correlation
Coefficients (PCC)® between these time series range from 0.03
(very low) to 0.89 (quite high), which allows us to evaluate
RecovDB for different correlation “strengths”. Each tuple
in a time series contains a timestamp and the value of the
measurement.

To evaluate the efficiency of REcovDB, we used two set-
ups. First, we fixed the length of the 12 time series to 10k,
while incrementally dropping 10% of successive values from
three different time series (the missing blocks are partially
overlapping). Figure 2a shows that the runtime of REcovDB
is barely sensitive to the percentage of missing values and
is up to 5x faster than ImputeDB (0.17sec vs. lsec) and up

3Assuming those time series contain related information, e.g., a weather
dataset can contain time series of temperature and wind speed.

4Passing around (a pointer to) the ts column is merely an easy way to
keep the repaired time series annotated with their timestamps. This does not
incur additional space and computation.

Shttps://www.bafu.admin.ch/

Shttps://en.wikipedia.org/wiki/Pearson_correlation_coefficient

1000 10000

24{"_5___-5——{ P
S - —a- < 1000 | &~ BayesDB —-&—
8 100 ¢ -2 IE%{Jethg = 3 i ImputeDB - —x- - -
o RecovDB —e— > 100 RecovDB —e—
g 10 £ x— X"
= = 10 X
S 5 _x—
c T X X X X X X Z 1 ;j/

P

0.1
10 20 30 40 50 60 70 80
Length of TS (n) [k]

0.1
10 20 30 40 50 60 70 80
% missing values

(a) Runtime with
missing values

increasing (b) Runtime with

time series length

increasing

1.6 BayesDB —&— o 24 BayesDB —&—
1.4 fimputeDB - —--- . 2 ImputeDB - —x-- -
1.2 f RecovDB —— /-/ RecovDB —e—
w 1 x w 164 B~ P
@ ke » ~ -
= 08 X S 12 Be—ET o x
T 06 e e T S X —
. al 08 |
04 |~ A’
0.2 :W 0.4 W

10 20 30 40 50 60 70 80
% missing values

10 20 30 40 50 60 70 80
Length of TS (n) [k]

(¢) Accuracy with increasing
missing values

(d) Accuracy with increasing
time series length

Fig. 2: REcovDB performance

to 2900x faster than BayesDB (0.17sec vs. 500sec). Second,
we increase the length of all 12 time series from 10k to 80k
(Figure 2b). Our results show that REcovDB is up to 10x
faster than ImputeDB (1.67sec vs 17.77sec), and up to four
orders of magnitude faster than BayesDB (0.8sec vs 3343sec).

To evaluate the accuracy of REcovDB, we used the same
two set-ups, but measured the RMSEs instead. Figure 2c
shows that the RMSE of ReEcovDB is barely affected with
more missing values while the RMSE of ImputeDB and
BayesDB tends to increase with the percentage of missing
values. RECovDB is up to 7.9x more accurate than ImputeDB
(0.18 vs. 1.42) and 3.4x more accurate than BayesDB (0.17 vs.
0.57). Figure 2d shows that when increasing the length of time
series, RECOVDB is up to 8.3x more accurate than ImputeDB
(0.18 vs 1.49) and 4x more accurate than BayesDB (0.25 vs
0.99).

IV. RECOVDB DEMONSTRATION

Demo GUIL. Figure 3 shows a screenshot of the demo GUI’.
Above the graph, users can load more data with the “load
time series” button. Seven time series were already loaded
and each was assigned a different color and is denoted by its
name. Users can activate/deactivate a time series by clicking
on its legend. The values of the three selected time series are
visualized in the main graph below. The sliding bar under the
main graph shows that we have zoomed in to only view their
values in 1985. At the right-side of the GUI, some textual
information about the loaded time series is given, followed by
some simple options to change the default number of the time
series to be repaired, the time series to be used for correlation,
the recovery threshold (i.e. € in Algorithm 1), and the per-
centage of additional missing values to introduce. By clicking
the Recover button, users can start the recovery process with
their configuration. Some statistics will be displayed in the text

7http://revival.exascale.info

ReVival Display~ Recovery~ Centroid Decomposition v

load time series Appenzell Jonschwil

Appenzell: 9.4455

Wiler: 6.1102

Jonschwil: 3.8214

Feb '85 Mar '85 Apr'85 Aug '85 Sep'85

M4 Thursday, May 23, 1985 Jul "85

Zoom 1w 1m 1y Sy Al

oct'85

Swiss rivers discharge

Source: Federal Office for the Environment FOEN
Unit: m3/s

Wiler

° Recovery of missing values

Recover missing values for:

«

as selected in chart

Choice of reference time-series: @

«

6 Automatically (based on correlation)

Threshold epsilon for CD:
0.0001

«

Additional missing values

2 Recover
Nov '85 Dec '85 Jan '86
Recover time: -
Frobenius distance: -
No. iterations recovery algorithm: -

Fig. 3: GUI of the RecovDB demo

fields under this button. The recovered time series is visualized
in the main window.

Demo Datasets. In addition to the BAFU dataset described
in Section III, we will provide two more datasets. The Me-
teoSwiss dataset, provided by the Swiss Federal Office of
Meteorology and Climatology (meteoswiss.admin.ch), has 20
weather time series each containing 200k records measured
every 10 min in different Swiss cities. Their PCCs range from
—0.12 to 0.9, which allows users to evaluate REcovDB with
both positive and negative correlations. The Gas concentration
dataset [7] contains the concentration level of 24 chemical
substances each represented as a time series of 4k records
measured every 6 hrs. These measurements were collected in
a gas delivery platform facility situated at the University of
California in San Diego. This dataset contains a larger range of
negatively correlated time series, with PCCs in [—0.75,0.78].

Demo Scenario’s. This demo will provide three scenarios to
showcase the main properties of REcovDB.

S1: recover multiple time series at once. In this scenario,
users can select multiple time series with different number
of missing blocks of different lengths in the time series. The
locations of missing blocks across different time series can
be distinct or (partially/fully) overlapping. By clicking the
Recover button, users can observe that all missing blocks in all
time series are repaired in one go. If the missing blocks have
been artificially introduced (see S2 below), the demo GUI will
display both the original values and the repaired values so that
users can easily compare the quality of the repair.

S2: accurate recovery with increasing missing values. In this
scenario, users can specify a percentage of missing values in
a text field. The GUI will remove this percentage of values
from the selected range of the selected time series. By clicking
the Recover button, all time series will be repaired at once.
To compare the accuracy of the recovery, the GUI will show

the original values in solid lines, and the recovered values in
dotted lines. By specifying larger percentages, users shall be
able to observe a fairly stable accurate recovery.

S3: efficient recovery with increasing data size. In this
scenario, users can vary the numbers of selected time series
and/or the range of the timestamps. For each configuration, the
total recovery time will be displayed under the Recover button.
By increasing the selection, users shall be able to observe that
the execution time barely increases.

V. CONCLUSIONS

In this demo, we demonstrate through REcovDB the bene-
fits of the CD-based recovery technique on top of a relational
DBMS. This demo allows the audience to experience how
to recover large and multiple time series without necessarily
finding a trade-off between efficiency and accuracy.

ACKNOWLEDGMENTS

This work is funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement No
732328 (FashionBrain).

REFERENCES

[1] J. Cambronero et al., “Query optimization for dynamic imputation,”
PVLDB, vol. 10, no. 11, pp. 1310-1321, 2017.

[2] J. Sun et al., “Online latent variable detection in sensor networks,” in
ICDE, April 2005, pp. 1126-1127.

[3] K. Wellenzohn et al., “Continuous imputation of missing values in
streams of pattern-determining time series,” in EDBT, March 2017.

[4] M. Khayati et al., “Memory-efficient centroid decomposition for long
time series,” in ICDE, April 2014.

[S] P. A. Boncz et al., “Breaking the memory wall in MonetDB,” Commun.

ACM, vol. 51, no. 12, pp. 77-85, 2008.

F. Saad and V. K. Mansinghka, “A probabilistic programming approach

to probabilistic data analysis,” in NIPS, 2016, pp. 2011-2019.

I. Rodriguez-Lujan et al., “On the calibration of sensor arrays for pattern

recognition using the minimal number of experiments,” Chemometrics

and Intelligent Laboratory Systems, vol. 130, pp. 123 — 134, 2014.

[6

[t

[7

—

